29,249 research outputs found

    Method for the production of strongly adhesive films on titanium and titanium alloys with a metallization process

    Get PDF
    A process for the spray-application of a strongly adhesive, thick antifriction layer on titanium and titanium alloys is proposed. The titanium/titanium alloy component to be coated is first subjected to cleaning in a pickling bath with reducing additives and sand-blasting, then coated with an intermediate layer of nickel, after which the final layer is applied. The formation of TiNi at the interface ensures strong bonding of the antifriction layer

    Mix-and-match compatibility in asymmetric system markets

    Get PDF
    This paper shows that the private incentive for mix-and-match compatibility in system markets diverges from the social planner's incentive if competing suppliers are asymmetric in production cost or product quality. There can be too much or too little compatibility when the market is served by fully integrated system suppliers. Also, the market outcome involves socially too much incompatibility in the form of exclusive technological alliances when the market is composed of independent component suppliers. These results contrast with the standard one obtained in the symmetric setup and shed new light on public policy towards compatibility, technological alliances, and bundling practices in system markets

    Compression failure mechanisms in unidirectional composites

    Get PDF
    Compression failure mechanisms in unidirectional composites were examined. Possible failure modes of constituent materials are summarized and analytical models for fiber microbuckling are reviewed from a unified viewpoint. Due to deficiencies in available models, a failure model based on nonlinear properties and initial fiber curvature is proposed. The effect of constituent properties on composite compression behavior was experimentally investigated using two different graphite fibers and four different epoxy resins. The predominant microscopic scale failure mode was found to be shear crippling. In a soft resin, shear crippling was in the form of buckling of fibers on a microscopic scale. However, stiff resins failure was characterized by the formation of a kink band. For unidirectional laminates, compressive strength, and compressive modulus to a less extent, were found to increase with increasing magnitude of resin modulus. The change in compressive strength with resin modulus was predicted using the proposed nonlinear model

    Clementine Observations of the Zodiacal Light and the Dust Content of the Inner Solar System

    Get PDF
    Using the Moon to occult the Sun, the Clementine spacecraft used its navigation cameras to map the inner zodiacal light at optical wavelengths over elongations of 3-30 degrees from the Sun. This surface brightness map is then used to infer the spatial distribution of interplanetary dust over heliocentric distances of about 10 solar radii to the orbit of Venus. We also apply a simple model that attributes the zodiacal light as being due to three dust populations having distinct inclination distributions, namely, dust from asteroids and Jupiter-family comets (JFCs), dust from Halley-type comets, and an isotropic cloud of dust from Oort Cloud comets. The best-fitting scenario indicates that asteroids + JFCs are the source of about 45% of the optical dust cross-section seen in the ecliptic at 1 AU, but that at least 89% of the dust cross-section enclosed by a 1 AU radius sphere is of a cometary origin. When these results are extrapolated out to the asteroid belt, we find an upper limit on the mass of the light-reflecting asteroidal dust that is equivalent to a 12 km asteroid, and a similar extrapolation of the isotropic dust cloud out to Oort Cloud distances yields a mass equivalent to a 30 km comet, although the latter mass is uncertain by orders of magnitude.Comment: To be published in Icaru

    The effect of resin toughness and modulus on compressive failure modes of quasi-isotropic graphite/epoxy laminates

    Get PDF
    Compressive failure mechanisms in quasi-isotropic graphite/epoxy laminates were characterized for both unnotched and notched specimens and also following damage by impact. Two types of fibers (Thornel 300 and 700) and four resin systems (Narmco 5208, American Cyanamid BP907, and Union Carbide 4901/MDA and 4901/mPDA) were studied. For all material combinations, failure of unnotched specimens was initiated by kinking of fibers in the 0-degree plies. A major difference was observed, however, in the mode of failure propagation after the 0-degree ply failure. The strength of quasi-isotropic laminates in general increased with increasing resin tensile modulus. The laminates made with Thornel 700 fibers exhibited slightly lower compressive strengths than did the laminates made with Thornel 300 fibers. The notch sensitivity as measured by the hole strength was lowest for the BP907 resin and highest for the 5208 resin. For the materials studied, however, the type of fiber had no effect on the notch sensitivity

    Determination of Strong-Interaction Widths and Shifts of Pionic X-Rays with a Crystal Spectrometer

    Get PDF
    Pionic 3d-2p atomic transitions in F, Na, and Mg have been studied using a bent crystal spectrometer. The pionic atoms were formed in the production target placed in the external proton beam of the Space Radiation Effects Laboratory synchrocyclotron. The observed energies and widths of the transitions are E=41679(3) eV and Γ=21(8) eV, E=62434(18) eV and Γ=22(80) eV, E=74389(9) eV and Γ=67(35) eV, in F, Na, and Mg, respectively. The results are compared with calculations based on a pion-nucleus optical potential

    Full O(alpha) corrections to e+e- -> sf_i sf_j

    Full text link
    We present a complete precision analysis of the sfermion pair production process e+e- -> sf_i sf_j (f = t, b, tau, nu_tau) in the Minimal Supersymmetric Standard Model. Our results extend the previously calculated weak corrections by including all one-loop corrections together with higher order QED corrections. We present the details of the analytical calculation and discuss the renormalization scheme. The numerical analysis shows the results for total cross-sections, forward-backward and left-right asymmetries. It is based on the SPS1a' point from the SPA project. The complete corrections are about 10% and have to be taken into account in a high precision analysis.Comment: 32 pages, 24 figures, RevTeX

    EDGE: a code to calculate diffusion of cosmic-ray electrons and their gamma-ray emission

    Full text link
    The positron excess measured by PAMELA and AMS can only be explained if there is one or several sources injecting them. Moreover, at the highest energies, it requires the presence of nearby (∼\simhundreds of parsecs) and middle age (maximum of ∼\simhundreds of kyr) source. Pulsars, as factories of electrons and positrons, are one of the proposed candidates to explain the origin of this excess. To calculate the contribution of these sources to the electron and positron flux at the Earth, we developed EDGE (Electron Diffusion and Gamma rays to the Earth), a code to treat diffusion of electrons and compute their diffusion from a central source with a flexible injection spectrum. We can derive the source's gamma-ray spectrum, spatial extension, the all-electron density in space and the electron and positron flux reaching the Earth. We present in this contribution the fundamentals of the code and study how different parameters affect the gamma-ray spectrum of a source and the electron flux measured at the Earth.Comment: Presented at the 35th International Cosmic Ray Conference (ICRC2017), Bexco, Busan, Kore
    • …
    corecore